X iv : q - a lg / 9 60 20 01 v 1 1 F eb 1 99 6 Poisson structures on the Poincaré group

نویسنده

  • S. Zakrzewski
چکیده

An introduction to inhomogeneous Poisson groups is given. Poisson inhomogeneous O(p, q) are shown to be coboundary, the generalized classical Yang-Baxter equation having only one-dimensional right hand side. Normal forms of the classical r-matrices for the Poincaré group (inhomogeneous O(1, 3)) are calculated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q - a lg / 9 70 20 09 v 1 6 F eb 1 99 7 The Fundamental Theorem of Vassiliev Invariants

1 Topology (and Combinatorics) 3 1.1 Vassiliev invariants and the Fundamental Theorem . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Hutchings’ combinatorial-topological approach . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Hutchings’ condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 A possible strategy. . . . . . . . . . . . . . . ...

متن کامل

ar X iv : q - a lg / 9 71 10 01 v 1 3 N ov 1 99 7 Universal R – matrix for null – plane quantized Poincaré algebra

The universal R–matrix for a quantized Poincaré algebra P(3 + 1) introduced by Ballesteros et al is evaluated. The solution is obtained as a specific case of a formulated multidimensional generalization to the non–standard (Jordanian) quantization of sl(2).

متن کامل

X iv : q - a lg / 9 71 10 01 v 3 1 D ec 1 99 7 Universal R – matrix for null – plane quantized Poincaré algebra

The universal R–matrix for a quantized Poincaré algebra P(3 + 1) introduced by Ballesteros et al is evaluated. The solution is obtained as a specific case of a formulated multidimensional generalization to the non–standard (Jordanian) quantization of sl(2).

متن کامل

ar X iv : q - a lg / 9 71 10 01 v 2 7 N ov 1 99 7 Universal R – matrix for null – plane quantized Poincaré algebra

The universal R–matrix for a quantized Poincaré algebra P(3 + 1) introduced by Ballesteros et al is evaluated. The solution is obtained as a specific case of a formulated multidimensional generalization to the non–standard (Jordanian) quantization of sl(2).

متن کامل

ar X iv : q - a lg / 9 70 50 12 v 1 1 6 M ay 1 99 7 Poisson structures on the center

It is shown that the elliptic algebra Aq,p(ŝl(2)c) has a non trivial center at the critical level c = −2, generalizing the result of Reshetikhin and Semenov-Tian-Shansky for trigonometric algebras. A family of Poisson structures indexed by a non-negative integer k is constructed on this center.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997